A THEORETICAL AND EXPERIMENTAL STUDY OF
CHROMATOTHERMOGRAPHY AT HIGH CONCENTRATIONS

S. M. Yanovskii, I. A. Silaeva, UDC 541,18,044
and G. L. Kogan

The concentration distribution produced by diffusion is examined; the differential equation
has been solved numerically by computer to give working curves that define the physico-
chemical characteristics. An approximate analytical solution is also given.

A new chromatographic separation method has been described [1-4], which involves chromato-
thermography without a carrier gas; it differs from the same process operated at low concentrations [5]
in that the moving temperature distribution causes the substance to reach high concentrations, and an
additional flux appears, as in all chromatographic processes without carrier gases, and as a result the
stationary concentration band is displaced ahead of the characteristic temperature. The theory of the
equilibrium process in the absence of broadening by diffusion has been discussed [1, 3], and an attempt has
been made also [2] to incorporate diffusion broadening. See [4] on the advantages of the new method and
the scope for analytical use,

Here we examine in detail the effects of diffusion, and present possible ways of calculating those
that enable one to examine the process over a wide range in the parameters and provide a rough choice
of the separation conditions,

The broadening is described mathematically by a system of two differential equations in partial
derivatives, which has been given previously [2]. The steady-state solution involves an ordinary Bernoulli
differential equation of first order with nonlinear coefficients, An analytical solution has been derived for
this [2] subject to rather crude assumptions about the coefficients, and this describes correctly only a
small concentration range near the characteristic temperature, Here we present a more detailed descrip-
tion, and it is shown that a solution in quadratures can be obtained without assumptions about the coeffi-
cients. However, the expression is too cumbersome and requires a computer to derive the integrals,
Exact solutions have been obtained by numerical integration of the initial differential equation by Euler's
method, The necessary calculations are presented here for processing data for individual bands produced
by carbon dioxide. The complete analytical solution has been simplified for use without resort to computer,
subject to minimal assumptions, The final expression can be applied by a single numerical integration,
which can be performed manually, Calculated curves are presented for a wide range of the parameters,
and these are close to the exact computer curves,

The differential equation of [2] for the stationary concentration distribution takes the following form
in dimensionless coordinates:

—d’\\'f =f (DN, + ()N, (1)
) - e . _ Keer
9= Ke (1= )i B = TR @

It follows from (1) and (2) that the process is controlled by the two dimensionless quantities K, and
K. '
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Fig.1. Ny(x) (concentration curves) for K; = 0.1; solid lines K,
=1, broken lines K, = 10, dot—dash lines K,=100. The
points have been calculated from (6) with K, = 1, x5 =15 1)
equilibrium curve given by (3).

Equation (1) has been solved numerically with a Minsk-32 computer; the error in Ny was 0.0005.
The initial conditions were provided by using the point x; corresponding to the maximum on the curve, As
in ordinary chromatography, there are deviations from equilibrium away from the peak, The peak itself
corresponds to zero derivative, and (1) and (2) shows that it lies on the curve

Ny L (1 — K x) e, (3)

corresponding to the equilibrium case examined in detail in [1, 3]. Integration of (1) gives Ny{(x), but the
processing may be facilitated by using a computer program for constructing the curves, which can be
printed out. In passing we determine the integral I, which is proportional to the amount of material in-
jected into the column:

S| N edy -~ S (4)
o o

—ce
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We determine the values of K; and K, to be used from the following possible ranges for the physi-
cal parameters: oy = 1~10 cm/sec; ¥ = 1-20 deg/em; Ty = 300-500°K; Q = 1-5 kcal /mole; D = 0.01-0.5
cm?/sec; the calculations were performed for K; of 0,05, 0.1, 0.5, and K, of 1, 5. 10. 160, and 1000, these

values covering virtually the whole possible range. Figures 1 and 2 show curves for various values of Kj,
Ky, and x,.

It is clear that increase in D (reduction in K,) naturally distorts both branches of the output curve;
if the concentration is less than 5%, one gets a symmetrical Gaussian peak near the characteristic point,
which corresponds to ordinary low concentration chromatothermography [5]. If D is large, the curves
become more symmetrical, If one reduces the amount g of substance injected, one gets symmetrical
peaks for practically any values of the parameters, while the maxima themselves are not displaced from
the characteristic temperature.

I D—0 (K, >100), the curves approximate to the equilibrium one, as (3) shows, with a common
envelope and a steep leading edge; the origins of the curve approximates to the point with the character-
istic temperature. Considerable deviations can occur from zero concentration at x = 0 if D is large, so
the position of the characteristic temperature must be determined by experiment, in which one reduces
the concentration until there is no shift in the peak position,

At high temperatures, there exists for each D an asymptotic curve for the various curves corre-
sponding to different initial conditions. The curves corresponding to high concentrations run close together
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Fig.2. Ny(x) (concentration curves) for K; = 0.5; solid lines
K, = 1, broken lines K; = 5, dot—dash lines Ky=100. 1)
equilibrium curve given by (3).

near zero, buf strictly speaking they never coincide by virtue of the uniqueness of the solution to (1), One
could obtain the entire set of curves for Fig.1 using the initial data for x = 0, but this would require the
concentration at zero to be specified very accurately. Therefore, we specified the initial data at the peak.
Then if there is considerable broadening by diffusion, it is incorrect to determine, as was done in [3], the
value of ¢ and hence Q from the envelope; it is however correct fo do this from the equilibrium curve of
{3), which passes through the peaks,

The calculations show that variation of Ky from 0.05 to 0,1 has little effect on the curve shape; in-
crease in Ky from 0.1 to 0.5 reduces the broadening of the leading edge appreciably. The sharpening factors
{the temperature distribution and the additional flux) reduce the broadening at the high concentrations in-
volved in overloaded chromatothermography, but they also produced skewness; the effects are less pro-
nounced at low concentrations. The accumulated computer data provide an easy means of checking the cali-
bration of q with respect to x% [4] for a wide range of conditions, Figure 3 shows curves as I, which is pro-
portional to g; as D increases under fixed initial conditions [y Ny{xy and K;]the material becomes distri-
buted over a’larger part of the sorbent, which occurs because the curves of the lower K, run at higher I.
Figures 1-3 show that a linear calibration fits well to the high-concentration region actually used. The
curve is not obliged to pass through zero at low concentrations, since in that case the Gaussian peak should
not be displaced appreciably on increasing the amount input. Figures 1 and 2 show that the leading edge
becomes very steep for K, > 10, so one can use a null detector for composition determination instead of an
ordinary detector. Although the null detector only records the curve onset, and this is affected by diffusion,
" the calibration curves in fact remain closely linear [4].

These graphs allow one to decide approximately the optimal parameters as follows: oven length
for given conditions (g, v, @.w, D, etc.) and maximum input, provided that all the substance is in the oven.
Then one can calculate the conditions that correspond to the production of specified concentrations ahead
of the oven [1] and establish the maximum measurable concentration in the linear calibration curve., We
consider as an example the calculation sequence required to find the maximum possible q.

Consider an oven with known temperature gradient v and length I; preliminary tests with low con-
centrations indicate the origin corresponding to the characteristic temperature Tx. Given speeds o
and w for the flow and oven enable us to use the temperature correction [2] to calculate I'yy, while ¢ may
be determined in several ways: calculated if Q is known for the system, or else from published values, or
again from experiments under isothermal condifions, or else from chromatographic experiments using (3}.
The values for D for conditions close to those actually employed can often be found from the literature, so
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Fig.3. Relation of I to x4y55: 1) Ky = 1; 2) 5 3) 10; 4) 100. Solid
lines Ky = 0,05, broken lines Ky = 0.1, dot—dash lines K;
= 0.5,

one has available all the values needed to calculate K, and K;. From Figures 1 and 2 one derives X5«
by reference to the oven length I, which defines the end of the curve on the basis of the broadening. and
then one uses Fig, 3 and (4) to calculate qg.

We use Figs.1-3 to consider the derivation of the effect of v, w, &y and D on the output curve for
particular numerical examples. We use the following numerical values for initial parameters: g = 10 em?,
v =20 deg/cm, oy =1cm/sec; w=0.2cm/sec; D=0,2 cmz/sec; Q = 8000 cal/mole, Tx = 400°K; Troom
=300°K, S =0.15 cm? and the corresponding accessory quantities are then o = 0.5 cm"i; Ky =RTx/@ =0.1;
Ky =0¢/Do =10; I'\x = aTx/Wlyoom = 6.7; I =qo/T'jx8 = 5; Fig. 3 gives xpax = 1.82. The peak in the oven
lies at ¥max = Xmax/0 = 3.64 cm from the characteristic temperature,

1. FEffects of y. We consider how the temperature gradient affects the result when q and the other
parameters are constant, Let the new value of v be 2 deg/cm, in which case ¢ =0.05 and Ky = 100. while
T'ix is not Jependent on vy and does not vary for a given system with a constant speed ratio between the flow
and oven. As q is fixed, while the working conditions are varied, the new curve corresponding to the pre-
vious amount of material is displaced, and therefore the new value of T given by (4) will be 0.5; then the
peak now lies at xpax = 0,75 and ¥max = 15 cm, so the conditions approach isothermal as the gradient is
reduced. and the curve stretches out along the oven. with the peak passing into a region of lower temper-
atures, The same conclusions could be drawn from a qualitative consideration. The calculations also
show that there is not a large displacement in the peak even though y and o have been reduced by factors
of 10, since factors that sharpen the band have more effect at low temperatures than high concentrations.

2. Effects of w. Let the new value be w = 0.1 cm/sec. while oy remains constant; this alters o
/w and I'jy, and thus Ty should be altered, and also the origin. The new value T} may be found from the
known previous value T} from the transcendental equation

' {,-‘A ’T' Q , 7
r . ) X % o ¥
LI 2 [RT_; | "T‘H

N X

This equation is solved numerically for the above values for the parameters to give T§ = 370° and 'y
= 12.3; the accessory parameters become ¢ = 0,585 cm=?, Ky =0.0983, K, =8,5. andI = 3,18, and Fig.3
gives approximately Xpmax = 1.63 and Ymax = 2.8 cm, so the distribution curve as a whole is advanced
along the oven towards lower temperatures. The shift in the characteristic temperature can be found
from

A = _* ¢ == 1.5 cm.

Y

The distance from the peak to Tx is reduced, and the curve in the layer becomes narrower, because the

adsorption is increased, and the band for the given g takes up a smaller part of the oven,
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Fig.4. Curves for CO, in air on MSM silica gel,
= 0.396; K, = 100, Points from experiment: 1)
q = 0.5 cm3; 2) 10; 3) 14 cm3; curves by calcula-
tion: solid lines K, =100, q = 10.1; broken lines
K, = 50, q = 12.9 cm?% dot—dash lines K,=300,
q="7.65 em?®; T equilibrium curve given by (3); 4)

However, although the curve has become nar-
rower, the output curve recorded by the detector
should become broader; in fact, as w has been halved,
the distance from the characteristic curve to the peak
is reduced by a factor 1.3 (inax/¥yax = 3.64/2.8),
whereas the Henry factor is increased by a factor
1.84 (T'g T =12.3/6.7).

3. Effect of vy and D. We envisage the case
of ay/w = 5 constant; as ay and D appear in the form
ay/D, it is best to consider the effects of changing
this ratio, Let a (/D change from 5 to 0,5, which
affects only K,, which becomes 1. Figure 3 shows
that the new values for x5 and ¢4y for the pre-
vious q will be 1,42 and 2.84 ¢m respectively. Com-
parison of the initial and final curves in Fig.1 shows
that the peak position approaches the characteristic
point as the effective diffusion coefficient increases
or the flow speed is reduced, but the curve corre-
sponding to K, = 1 takes up a much larger part of the
oven, and the leading edge terminates at a large dis-'
tance from Tx.

This model enables us to solve the inverse
problem, namely to use experimental results to find
the diffusion coefficient. Although D and @ appear
as a ratio in (1), and therefore the effects of the
thermal broadening to some extent are balanced out,
we have to stress that the resulting value for D will

be an effective one in view of the complexity of the
actual thermal and hydrodynamic processes. The
actual process may be affected by the sorbent heating rate, nonuniformity in the temperature distribution,
and mixing in the flow, all of which appear inexplicitly in the defective diffusion coefficient, and which do
not appear in our model,

. curve calculated from (6) for q = 10.

We performed experiments on a column filled with MSM silica gel; the substance to be analyzed
was CO,, with the carrier gas air, and the flow rate vq =9.5 cm®/min, with a column diameter of 0.45 cm,
oven speed W =4 cm/min, y = 1,8 deg/cm, and Ty = 350°C.

Figure 4 shows results from several runs for various q in terms of the dimensionless coordinate
x; the distances on the chart have been converted to distances in the oven via § =9 w/ve; the value 6=0,013
em~! was found from the graph in terms of In (1"N1)/(1—'yz/)/Tx) against i, where N; and ¢ correspond to the
peak on the curve. The value of Tyx was 8.4, with K; = 0.396. To find the K; from the curve correspond-
ing to g = 10 cm?® we chose the optimal K, to provide the best fit of the calculated curve to the experimental
points, Figure 4 shows curves corresponding to several K,; the best curve having K, = 100 is shown in
solid line, The result for D, using a mixing factor of 0,75, was 1 cm?/sec, which is 5-6 times the molec~
ular diffusion coefficient given in handbooks. However, the difference arises because D includes additional
broadening factors, The solid lines were calculated for K, = 100 forq = 0.5 and 14 em3, The deviations
from experiment for small q indicate that our model is only an approximation to the actual process, al-
though on the whole it correctly reflects in a qualitative fashion the basic trends in the process.

Numerical solution of (1) requires a computer, which is not always available; it is easier to-use an
analytical solution, and we have previously [2] derived such a solution, but with fairly crude assumptions:
the exponential was expanded as a series taking only two terms, while the Kix term was neglected in the
denominator in (2). These assumptions enable us to describe correctly the output curve for range 0-0.4nx,
i.e., low concentrations, where the distinctive features of chromatothermography have little effect. Here
we present a revised analytical solution for a wider range in x,

We convert (1) via the substitution Ny = 1/z to a linear homogeneous equation, whose solution takes
the following general form after reverse substitution:

1108



exp[ U\”xfl (x) dx]
N, (x) = - b p . (5)
C— jf-z(x)eXp[ K.f1(x) dx]

We see from (5) with x =x, that C = 1/Ny(xy), where N;(x,) is the initial value of the concentration, which
we took from the peak on the curve and which corresponds to (3). Equation (5) contains two integrals lack~
ing explicit expressions, whicharevirtually impracticable to use without a computer. We can simplify this
expression and operate with only one integral, The fraction x/(1—x) canbe replaced approximately by 1 + x
+ x? with less than 5% error for x < 0.4; as the expression f;(x) in the denominator contains K. and x does
not exceed 0.5, we obtain satisfactory solution for x between 0 and 0.8, which corresponds to the actual
working range in the technique, If K; is less than 0.5, one can use a wider range in x. and these simplifi-
cations then allow one to derive the integral of f,(x). The exponential will have to be expanded as a series
to integrate the expression in the denominator of (5), which would involve considerable loss of accuracy.
The final solution takes the form

exp [Noyy (v, Ky MI

N (x) == . (6)
C—K, s 0o (x, K,dx
where
g (v, Ky) = x—ef {Kl‘l = R (b= 2/l N _f\‘)j
pix - Ky, (v Nl
Golr, Ky = S0 Rou e Rt

T — K

Then to calculate the curve shape from (6) requires one to calculate only a single integral numeri-
cally using a comparatively simple integrand; these calculations can be performed manually by slide rule.
If one uses a computer, the working time is very much reduced compared with numerical integration of (1).
Figures 1 and 4 show examples of manual calculations, and it is clear that analytical solution via (8) (points
on the curves) differs little from the exact computer solution of (1), which is shown in Figs,1 and 4 by the
solid lines,

NOTATION

Ny, volume concentration of test substance in gas phase, ml/ml of sorbent; ¥, coordinate inside oven
reckoned from the point with the characteristic temperature, cm; ¥, coordinate of chart point, cm; Ve,
chart speed, cm/sec; [, length of oven, cm; x, dimensionless coordinate; g, parameter for temperature distri-
bution and properties of test substance, 1/cm; v, temperature gradient, deg/cm; Ty, temperature at charac-
teristic point (corresponds to oven speed peak at low concentrations) °K; Q,heat of adsorption, cal/mole;R,
universal gas constant, cal/deg- mole, ap, linear flow speed at outlet, cm/sec; w, ovenspeed. cm/sec; D,
effective diffusion coefficient referred to outlet; f;(x), f,(x), functions in (2); K. K,, dimensionless quantities;
q amount injected. cm?; S, column cross section. cm?; T'ix, Henry coefficient at characteristic temperature;
I, integral in (4); C, constant of integration in (5).

LITERATURE CITED

1. A, A, Zhukhovitskii, M, L., Sazonov, L. G, Gelman, and W, P, Schwarzman, Chromatographia.
4, No, 12, 547 (1971).

2. S. M. Yanovskii, I. A. Silaeva, L. G. Gel'man, V. P. Shvartsman, M. L. Sazonov, and A, A,
Zhukhovitskii, Zav, Lab., 38, No.5, 526 (1972).

3. L. G. Gel'man, Thesis, VNIGNI, Moscow (1972).

4, 1. A, Silaeva, A. A, Zhukhovitskii, M, L. Sazonov, and V. P. Shvartsman, Zav. Lab., 38, No.11,
1297 (1972). T

5. A, A, Zhukhovitskii and N, M, Turkel'taub, Gas Chromatography [in Russian], Gosooptekhizdat,

Moscow (1962),

1109



